*** Start by creating a simple table
SQL> CREATE TABLE reverse details (id NUMBER, name VARCHARZ (20));

Table created.

*** Next, create a Reverse Key Index on the id column (Note: a non-unique index is being used)
SQL> CREATE INDEX reverse_index ON reverse_details(id) REVERSE;

Index created.

*** Let's insert a whole bunch of rows and collect statistics

SQL> INSERT INTO reverse details SELECT rownum, 'David Bowie' FROM dual CONNECT BY LEVEL <= 1000000;
1000000 rows created.

SQL> COMMIT;

Commit complete.

SQL> EXEC dbms_stats.gather table stats (ownname=>'BOWIE', tabname=>'REVERSE DETAILS',
estimate percent=> null, cascade=> TRUE, method opt=> 'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.

*** Let's attempt a very simple, innocent looking range scan predicate

*** But first, let's start a 10053 trace to see what execution plans the CBO considers

SQL> ALTER SESSION SET EVENTS '10053 trace name context forever, level 1';

Session altered.

SQL> SELECT * FROM reverse details WHERE id BETWEEN 42 AND 43;

ID NAME

42 David Bowie
43 David Bowie

Execution Plan

Plan hash value: 3030292439

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time
| 0 | SELECT STATEMENT | | 3 48 | 680 (3)] 00:00:09
| * 1 | TABLE ACCESS FULL| REVERSE DETAILS | 3 48 | 680 (3) 00:00:09

Predicate Information (identified by operation id):

1 - filter ("ID"<=43 AND "ID">=42)

*** No good, Oracle performed a Full Table Scan even though we were only after 2 rows

*** A partial dump of the 10053 dump reveals the following

BASE STATISTICAL INFORMATION
khkhhkhkhkhkhkhkhkhkkhkhkrhkkhkhkhxkkk,xx
Table Stats::
Table: REVERSE DETAILS Alias: REVERSE DETAILS
#Rows: 1000000 #Blks: 3033 AvgRowLen: 16.00
Index Stats::
Index: REVERSE INDEX Col#: 1
LVLS: 2 #LB: 2966 #DK: 1000000 LB/K: 1.00 DB/K: 1.00 CLUF: 999994.00

KA KKk kkhkkhkhhhkhhhhhhhhkhhhhkhkAhA A AKX AXK KX KK

SINGLE TABLE ACCESS PATH
Column (#1): ID(NUMBER)
AvgLen: 5.00 NDV: 1000000 Nulls: O Density: 1.0000e-006 Min: 1 Max: 1000000
Table: REVERSE DETAILS Alias: REVERSE DETAILS
Card: Original: 1000000 Rounded: 3 Computed: 3.00 Non Adjusted: 3.00
Access Path: TableScan
Cost: 679.86 Resp: 679.86 Degree: 0
Cost io: 665.00 Cost cpu: 221601538
Resp io: 665.00 Resp cpu: 221601538
Best:: AccessPath: TableScan
Cost: 679.86 Degree: 1 Resp: 679.86 Card: 3.00 Bytes: 0

*** The CBO is fully aware of the reverse key index as shown in the Index stats
*** But in the Single Table Access Path does not even consider the Reverse Key Index as a valid
option

*** You can try to hint the thing as much as you want but the CBO does not consider Index Range
Scans with Range Predicates.

*** You might be able to generate an Full Index Scan out of Oracle

SQL> SELECT /*+ INDEX(rd) */ * FROM reverse details rd WHERE id BETWEEN 42 AND 43;

42 David Bowie
43 David Bowie

Execution Plan

Plan hash value: 3845841859

| Id | Operation | Name | Rows | Bytes | Cost (%CPU) | Time

| 0 | SELECT STATEMENT | | 3 48 | 3033(1) | 00:00:37 |
| 1 TABLE ACCESS BY INDEX ROWID| REVERSE DETAILS | 3| 48 | 3033(1) | 00:00:37 |
|* 2 INDEX FULL SCAN | REVERSE_INDEX | 43 | | 2990 (1) | 00:00:36

*** Equality conditions are not a problem

SQL> SELECT * FROM reverse details WHERE id = 42;

42 David Bowie

Execution Plan

Plan hash value: 1002750038

| Id | Operation | Name | Rows | Bytes | Cost (%CPU) | Time

0	SELECT STATEMENT		1	16	3(0)	00:00:01
1	TABLE ACCESS BY INDEX ROWID	REVERSE DETAILS	1 16	3(0)	00:00:01	
* 2 INDEX RANGE SCAN	REVERSE_INDEX	1	2(0)	00:00:01		

Predicate Information (identified by operation id):

2 - access("ID"=42)

*** If a range predicate can be rewritten as an IN condition
*** Qracle can convert the predicate to separate OR equality conditions and can use the Reverse Key
Index

SQL> SELECT * FROM reverse_details WHERE id IN (42, 43);

42 David Bowie
43 David Bowie

Execution Plan

Plan hash value: 1015170962

| Id | Operation | Name | Rows | Bytes | Cost (%CPU) | Time

0	SELECT STATEMENT		2	32	6 (0)] 00:00:01
1] INLIST ITERATOR					
2	TABLE ACCESS BY INDEX ROWID	REVERSE DETAILS	2 32	6 (0)] 00:00:01	
* 3] INDEX RANGE SCAN	REVERSE_INDEX	2	4 (0)] 00:00:01		

Predicate Information (identified by operation id):

3 - access("ID"=42 OR "ID"=43)

*** If a range scan is "really" an equality condition, then again, not a problem

SQL> SELECT * FROM reverse details WHERE id BETWEEN 42 AND 42;

ID NAME

42 David Bowie

Execution Plan

Plan hash value: 1002750038

| Id | Operation | Name | Rows | Bytes | Cost (%CPU) | Time

0	SELECT STATEMENT		1	16	3(0)	00:00:01
1 TABLE ACCESS BY INDEX ROWID	REVERSE DETAILS	1	16	3(0)	00:00:01	
* 2 INDEX RANGE SCAN	REVERSE_INDEX	1	2(0)	00:00:01		

Predicate Information (identified by operation id):

2 - access ("ID"=42)

*** Another example
SQL> SELECT * FROM reverse details WHERE id >= 42 AND id <= 42;

42 David Bowie

Execution Plan

Plan hash value: 1002750038

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time

| 0 | SELECT STATEMENT | | 1] 16 | 3(0)| 00:00:01

| 1 TABLE ACCESS BY INDEX ROWID| REVERSE DETAILS | 1 16 | 3(0)| 00:00:01 |
| * 2 INDEX RANGE SCAN | REVERSE_INDEX | 1] | 2(0)| 00:00:01 |

Predicate Information (identified by operation id):

2 - access ("ID"=42)

*** LIKE predicates are also Range Predicates that cause Reverse Key Indexes to be ignored by the
CBO

*** Just creating another table with a character based reverse key index

SQL> CREATE TABLE reverse stuff AS SELECT * FROM dba objects;

Table created.

SQL> CREATE INDEX reverse object name_ i ON reverse_stuff (object name) REVERSE;
Index created.

SQL> EXEC dbms_ stats.gather table stats (ownname=>'BOWIE', tabname=>'REVERSE STUFF',
estimate_percent=> null, cascade=> TRUE, method opt=> 'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.
SQL> ALTER SESSION SET EVENTS '10053 trace name context forever, level 1';
Session altered.

SQL> SELECT * FROM reverse stuff WHERE object name LIKE 'REVERSES';

Execution Plan

Plan hash value: 518781941

| Id | Operation | Name | Rows | Bytes | Cost (%CPU) | Time
| 0 | SELECT STATEMENT | | 1| 87 | 44 (3)] 00:00:01
[* 1 | TABLE ACCESS FULL| REVERSE STUFF | 1 87 | 44 (3)] 00:00:01 |

Predicate Information (identified by operation id):

1 - filter ("OBJECT NAME" LIKE 'REVERSE%')

*** Again, the 10053 trace shows how the reverse key index is ignored by the CBO

*** Portion of 10053 trace file

SINGLE TABLE ACCESS PATH
Column (#2): OBJECT_ NAME (VARCHAR2)
AvgLen: 19.00 NDV: 10862 Nulls: 0 Density: 9.2064e-005
Table: REVERSE STUFF Alias: REVERSE STUFF
Card: Original: 14437 Rounded: 1 Computed: 1.33 Non Adjusted: 1.33
Access Path: TableScan
Cost: 43.50 Resp: 43.50 Degree: 0O
Cost io: 43.00 Cost cpu: 5229919
Resp_io: 43.00 Resp cpu: 5229919
Best:: AccessPath: TableScan
Cost: 43.50 Degree: 1 Resp: 43.50 Card: 1.33 Bytes: 0

*** Note, index access path not even considered by the CBO

*** However, again Oracle can pick up on when a LIKE is really equivalent to an equality predicate

SQL> SELECT * FROM reverse stuff WHERE object name LIKE 'BOWIE';

Execution Plan

Plan hash value: 3482594567

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | I 1 87 | 2 (0)] 00:00:01
| 1 | TABLE ACCESS BY INDEX ROWID| REVERSE STUFF | 1 87 | 2 (0)| 00:00:01
[* 2 | INDEX RANGE SCAN | REVERSE OBJECT NAME I | 1 I 1 (0)] 00:00:01

Predicate Information (identified by operation id):

2 - access ("OBJECT NAME" LIKE 'BOWIE')

*** portion of 10053 trace

SINGLE TABLE ACCESS PATH
Column (#2): OBJECT_NAME (VARCHAR2)
AvgLen: 19.00 NDV: 10862 Nulls: 0 Density: 9.2064e-005
Table: REVERSE_STUFF Alias: REVERSE_STUFF
Card: Original: 14437 Rounded: 1 Computed: 1.33 Non Adjusted: 1.33
Access Path: TableScan
Cost: 43.43 Resp: 43.43 Degree: 0
Cost io: 43.00 Cost cpu: 4508069
Resp_io: 43.00 Resp cpu: 4508069
Access Path: index (AllEgRange)
Index: REVERSE_OBJECT NAME_I
resc_io: 2.00 resc_cpu: 16273
ix sel: 9.2064e-005 ix sel with filters: 9.2064e-005
Cost: 2.00 Resp: 2.00 Degree: 1
Best:: AccessPath: IndexRange Index: REVERSE OBJECT NAME I
Cost: 2.00 Degree: 1 Resp: 2.00 Card: 1.33 Bytes: 0

*** The index is considered in this example

*** Note in all these examples, a Non-Unique index has been used and in each example, Oracle has
been using an Index range Scan

*** Note also that a Unique Index can also use an Index Range scan if it has more than one column
and the leading column known but not all other columns are used.

SQL> CREATE TABLE reverse test AS SELECT * FROM dba tables;

Table created.

SQL> CREATE UNIQUE INDEX reverse_test_uk ON reverse_test (table_name, owner) REVERSE;

Index created.

SQL> SELECT * FROM reverse test WHERE table name = '"TEST2"';

Execution Plan

Plan hash value: 1917598036

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time

0	SELECT STATEMENT		1 212	3(0)	00:00:01	
1	TABLE ACCESS BY INDEX ROWID	REVERSE TEST	1	212	3(0)	00:00:01
* 2 INDEX RANGE SCAN	REVERSE _TEST_ UK	1	2(0)	00:00:01		

Predicate Information (identified by operation id):

2 - access ("TABLE NAME"='TEST2')

*** Oracle will ignore Reverse Key Index for Range *Predicates*

*** But can use *Index Range Scans* if the index is Non-Unique or not all columns (but at least the
leading column) of a Unique Index is used

